Course Type	Course Code	Name of Course	L	Т	P	Credit
DP	NGPC518	Mathematical Functional Analysis Practical	0	0	2	1

Course Objective

The primary objective of the course is to introduce fundamental and advanced aspects of time series analysis techniques for geo-record analysis and processing.

Learning Outcomes

- Practical knowledge on geophysical/geological time/space series data analysis.
- Practical knowledge on periodicity, how to design a filter, algorithm for signal enhancement and noise removal.
- Practical knowledge on signal processing techniques for exploration of geoscience.

Unit No.	Description of Lectures	Lecture Hrs.	Learning Outcomes
1.	Compute DFT coefficients of a time series and estimate energy spectra	2	Time series analysis and processing techniques
2.	Compute convolution and cross correlations of two time series.	2	Time series analysis and processing techniques
3.	Investigate the effect of various windows in reducing the energy leakage. Estimate energy spectrum of a signal from auto correlation function	2	Time series analysis and processing techniques
4.	Compute FFT of a signal and investigate the effects of padding zeroes to a short time series in estimated energy spectrum.	2	Time series analysis and processing techniques
5.	Compute the responses of Butterworth and Chebyshev filters and evaluate their performances.	2	Time series analysis and processing techniques
6.	Design a notch filter to eliminate power line frequency from an observed signal. Design a spiking deconvolution filter using i) spectral division and ii) Wiener filtering.	2	Time series analysis and processing techniques
7.	Investigate the properties of different types of wavelets and converting a mixed phase wavelet to a minimum phase wavelet	2	Time series analysis and processing techniques
8.	Generate synthetic seismogram.	2	Time series analysis and processing techniques

9.	Cepstral analysis of a signal to distinguish between primary and an echo	2	Time series analysis and processing techniques
10.	Wavelet transform and decomposition technique for denosing of the time series.	2	Time series analysis and processing techniques
11.	Design of commonly used signal enhancement filters, viz. upward and downward continuations, second vertical derivation.	2	Time series analysis and processing techniques
12.	Compute 2D FFT and estimating radial spectrum. Compute the frequency response of a source/receiver array.		Time series analysis and processing techniques
13.	Compute the probability density function, mean and variance of a given random signal	2	Time series analysis and processing techniques
14.	Revision of all processing techniques	2	Revision
	Total:	28	

Text Books

- 1. Bath, M., 1974. Spectral Analysis in Geophysics. Elsevier, Amsterdam, Netherlands.
- 2. Gubbins D., 2004, Time series analysis and inverse theory for geophysicists, Cambridge University Press.

Reference Books

- 1. Baskakov, S. 1986, Signals and Circuits, Mir Publishers
- Beauchamp, K.G., 1975. Walsh Functions and their Applications. Academic Press, New York, NY 236pp.
- 3. Blakeiy, Richard J., 1995, Potential Theory in Gravity and Magnetic Applications, Cambridge University Press.
- 4. Dimri, V. P., 1992, Deconvolution and Inverse Theory: Applications to Geophysical Problems, Elsevier Science.
- Kanasewich, E. R., 1975, Time Sequence Analysis in Geophysics, The University of Alberta Press
- 6. Naidu, P. S., and Mathur, M. P., 2012, Analysis of Geophysical Potential Field: A Digital Signal Processing Approach: Elsevier
- 7. Robinson, E. A., 1967, Statistical communication detection with special reference to digital data processing of radar and seismic signal: GriffIn
- 8. Robinson, E. A., 1981, 'Time Series Analysis and Application: D. Reidel Yilmaz, 0. Seismic Data Processing, Society of Exploration Geophysicists.